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Three-dimensional molecular structure is fundamental in chemical function identifi-
cation and computer-aided drug design. The enumeration of a small number of feasible
conformations provides a rigorous way to determine the optimal or a few acceptable
conformations. Our contribution concerns a heuristic enhancement of a method based
on distance geometry, typically in relation with experiments of the NMR type. Distance
geometry has been approached by different viewpoints; ours is expected to help in sev-
eral subtasks arising in the process that determines 3D structure from distance infor-
mation. More precisely, the input to our algorithm consists of a set of approximate
distances of varying precision; some are specified by the covalent structure and others
by Nuclear Magnetic Resonance (NMR) experiments (or X-ray crystallography which,
however, requires crystallization). The output is a valid tertiary structure in a specified
neighborhood of the input. Our approach should help in detecting outliers of the NMR
experiments, and handles inputs with partial information. Moreover, our technique is
able to bound the number of degrees of freedom of the conformation manifold. We
have used numerical linear algebra algorithms for reasons of speed, and because they
are well-implemented, fully documented and widely available. Our main tools include,
besides distance matrices, structure-preserving matrix perturbations for minimizing sin-
gular values. Our Matlab (or Scilab) implementation is described and illustrated.
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1. Introduction

Structural proteomics is today a major challenge in computational chem-
istry and molecular biology. Drug design and discovery relies increasingly on
structure-based methods in order to improve efficiency and accuracy.
Three-dimensional geometric (i.e., tertiary) structure is essential in function iden-
tification, docking of small flexible ligands to macromolecules as well as pharma-
cophoric pattern matching.

If we were given all exact pairwise distances between a set of points, their
3D coordinates could be immediately obtained. So these are equivalent expres-
sions of the tertiary structure. Furthermore, distances provide an excellent model
for studying 3D molecular conformations because they can capture the geometry
as determined by the torsion dihedral angles about bond axes. The hypothesis
is that, at a first approximation, conformations depend only upon the dihedral
angles, whereas bond angles and bond lengths can be considered as rigid. This is
valid because distortions of bond angles and lengths require much more energy
than changes of the dihedral angles; e.g., Ref. [1]. Therefore, when talking about
degrees of freedom in the rest of this paper, we shall refer to varying dihedral
angles. In the case of proteins, the conformation is determined by the structure
of the polypeptide chain. Rotation is permitted around the angles φ,ψ and ω,
each triplet corresponding to one amino-acid residue. However, the last one is
usually at an angle of ω = π , said to be in a trans state, and rarely at ω = 0 if
at a cis state. So, in most cases, we focus on the first two angles.

Distance data can, at least partially, be provided by the contact map, which
is precisely what Nuclear Magnetic Resonance (NMR) experiments offer. This
input data is obtained by exploiting the Nuclear Overhauser Effect (NOE), a
powerful and mature technology, which is further improving nowadays. Remark
that distances between neighboring atoms are readily computable. Section 2 for-
malizes the notions of distance geometry, and discusses existing work related to
our approach in more detail.

Today, new distance geometry methods are sought (e.g., Refs. [2–5]) in order
to contribute in the quest of massive-throughput structure determination, e.g.,
Refs. [6,7]. One factor for this is the automatization of spectrum assignment in
NMR experiments, which shall increase significantly the available distance data.
One application of distance geometry is to assign a level of confidence to dis-
tance information, which may be imprecise for the new needs of computational
chemistry and molecular biology. This can be achieved by treating some inputs
as accurate while allowing to perturb inputs that seem false or are simply not
yet available due to the length of the phase of spectrum assignment in NMR.
Certain methods consider entire families of proteins with homological similari-
ties, and try to treat them with the minimal possible distance information. The
latter may come from an on-line NMR process, where some of the intervals are
inaccurate or simply not known.
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We expect that our use of distance geometry shall help in several subtasks
arising in the procedures that predict 3D structure from distance information.
Typically, one applies a sequence of algorithms in order to refine the input and
then filter the set of allowable conformations through a series of tests. Our algo-
rithm should work in conjunction, and possibly in alternation, with certain other
processes such as bound smoothing (usually by application of the triangle and
tetrangle inequality), segmentation into substructures, and outlier elimination.
Another stage typically enforces energy minimization and a number of chemical
conditions on the current candidate conformations.

In our setting, the primary structure is considered as known, which enables
us to deduce certain distances. The bond angles can usually be determined from
the covalent structure, while for fixed bond lengths there is a one-to-one rela-
tion between the bond angle and the geminal distance so that these distances can
also be determined. For proteins, this information represents the approximate
distances between certain pairs of backbone Carbon atoms. The distances across
rotatable bonds usually vary within their cis/trans limits, and all the distances
within any known rigid group of atoms (e.g., amino-acid residues or phenyl
rings) are constrained to their known values. Distances that are unknown and
not given by the experimental data are constrained by the triangle (and tetran-
gle) inequality and must satisfy certain obvious bounds, such as the one corre-
sponding to van der Waal’s forces.

Our algorithm uses local search to identify molecular conformations when
a partial set of pairwise Cartesian distances between atoms is known with some
error. If it is given a known valid conformation, our technique can explore
nearby conformations lying on the same manifold of all allowable conforma-
tions, hence also topologically close to each other. This answers the need of
biased sampling in order to avoid previously sampled configurations. Our tech-
nique offers the freedom to choose the direction of exploration. Furthermore, it
is able to bound the dimension of the manifold.

Distance matrices contain the pairwise distances between atoms, so we formu-
late the problem of computing conformations as a structured singular value (or eigen-
value) minimization problem. This is an optimization problem involving eigenvalues,
which are values of a function defined in the matrix subspace to be specified below;
this subspace lies in the set of real symmetric matrices. Given distance approxima-
tions (or interval constrains, respectively), the aim is to find values near the given
approximations (or in these intervals) so that the structure can be embedded in 3D
Euclidean space. Although the algorithm is numerical for reasons of speed, it guaran-
tees its output under certain assumptions. It has been implemented on Matlab and
on Scilab. It outputs backbone conformations, such as the one shown in figure 1,
for the example of a cyclic molecule. To give an example of its performance, our code
can determine a conformation of a molecule with 20 degrees of freedom in 3.79 s on
a 500-MHz Pentium-III processor. We implemented the triangle inequality in order
to preprocess the given intervals iteratively.
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Figure 1. One backbone conformation computed by our program, for a cyclic molecule with 15
degrees of freedom.

The article is organized as follows. The next section overviews the theory
of distance matrices and how it is used in conformation search. Section 3 con-
tains the background on structured matrix perturbations and existing work in
the area. Section 4 elaborates on our algorithm and sketches our Matlab and
Scilab implementations. Section 5 applies distance geometry and our approach
to cycloalkanes, whereas the following section reports on experimental results for
more general molecules. Section 7 sketches further work.

2. Distance matrices

We review techniques related to distance geometry and introduce distance matri-
ces; then, we formalize certain algebraic properties and the problem to be
treated.

The problem of identifying the conformation of proteins of known amino-
acid sequence, by using a model of residue–residue energy-like potential, was
the underlying motivation in exploring the theory of distance geometry [8,9].
Distance geometry applications have been quite successful (e.g., Refs. [5,9–12]),
contributing in the conformational analysis of molecules with about 200 resi-
dues [13]. Given an incomplete set of distances, the question of 3D embedding
is a global optimization problem; see, e.g., Refs. [9,11,14].

Distance geometry has been implemented in certain packages. Most often,
it constitutes one phase in a series of algorithms applied to refine the
experimental data and filter the set of predicted conformations until a few
valid candidates are produced. One package that is currently maintained and
freely available is DGSOL [15], which relies on continuation methods for global
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optimization in order to trace the minimizing configurations. A package that
used to be very popular is EMBED, which explores the conformation space by
random sampling. The key idea lies in minimizing an error function, which mea-
sures the total violation of the distance constraints after a best-fit embedding
of the structure in Euclidean space. Since there is a lot of freedom in choosing
this function, it is possible to make it smooth and well-behaved for optimization.
A number of different conformations have been obtained for molecules with
about 100 atoms or more [9]. To ensure completeness, linearized embedding uses
the metric matrix, which contains the inner products between vectors defining
local coordinate systems within the molecule [16]. Other packages for molecu-
lar conformations using distance geometry include HELIX, DGEOM, DPSACE,
VEMBED, and DYANA [3]. DYANA relies on local information, hence it han-
dles well nearby atoms, but may encounter difficulties with those lying far apart
on the chain. It is quite fast on many classes of inputs, depending on the way
the constraints are distributed along the chain. DYANA is an example of using
local (spherical) coordinates, which offers an interesting general approach (see,
also Ref. [16]). This and other software is found at Refs. [17,18].

The speed of modern hardware has revived an interest into algebraic meth-
ods, which may handle efficiently substructures of small size as part of larger
problems in computational chemistry and structural biology. Hence, algebraic
techniques have been applied to conformational search, since they offer com-
pleteness, raise no issues of convergence, and can certify their results, e.g., [16,
19–22]. Modeling the molecular problem in algebraic terms is achieved, in a gen-
eral manner, by distance geometry. However, all of these methods have complex-
ity exponential in the number of degrees of freedom, so they are limited to small
molecules, say with at most a dozen of degrees of freedom. The goal of this
paper is to exploit the power of distance matrices while studying molecules of
larger sizes, by employing numerical linear algebra techniques.

It is time now for a formal presentation of distance geometry; for further
details see Refs. [8,9,19]. Suppose that there are n points; these shall correspond
to the backbone atoms allowed to rotate. Let dij , i, j ∈ {1, . . . , n}, denote the
Euclidean distance between the corresponding points, with d11=· · ·=dnn=0. We
define the corresponding symmetric distance matrix (or Cayley–Menger matrix)
by

D(1, . . . , n) :=




0 1
2d

2
12 . . .

1
2d

2
1n 1

1
2d

2
12 0 . . . 1

2d
2
2n 1

...
...
. . .

...
...

1
2d

2
1n

1
2d

2
2n . . . 0 1

1 1 . . . 1 0



,

which contains, besides the adjacency matrix as a (principal) submatrix, an addi-
tional row and column of units, with the diagonal being zero.
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Theorem 2.1 [8]. A necessary and sufficient condition for the distance matrix
D(1, . . . , n) to express a point set embeddable in m-dimensional Euclidean space
Em, m � 3 is, for some ordering of the points, to have (i) for k = 1, . . . , m,

(−1)k+1 detD(1, . . . , k + 1) > 0,

and (ii) for any points u, v, m+ 1 � u, v � n,

detD(1, . . . , m+ 1, u) = detD(1, . . . , m+ 1, v) = detD(1, . . . , m+ 1, u, v) = 0.

Let us illustrate this theorem with some examples. Part (i) for k= 1 becomes
d2
i1i2
> 0, which ensures that points i1, i2 ∈ {1, . . . , n} are distinct. For k = 2, con-

dition (i) becomes

4 det (D(i1, i2, i3)) =
(
d2
i2i3
− d2

i1i2
− d2

i1i3

)2 − 4d2
i1i2
d2
i1i3
< 0

for any three points i1, i2, i3 ∈ {1, . . . , n}. This is violated, since the determinant
vanishes, when the points indexed by i1, i2, i3 are collinear. The condition is sat-
isfied if the respective distances satisfy the triangle inequality. We generalize this
inequality, and derive it from the law of cosines, at the end of section 4, expres-
sion (3). Part (ii) is satisfied if matrix D(1, . . . , n) has rank m+ 2.

Corollary 2.2. With the notation of the previous theorem, n � 4 distinct points
(not all coplanar) are embeddable in E3 if and only if rank(D(1, . . . , n)) = 5.

This corollary provides the foundation of our approach. For an indepen-
dent proof of this fact, the reader may refer to Ref. [19]. So, the problem of map-
ping the input points to E3, is equivalent to perturbing, or completing, matrix
D(1, . . . , n) so that its rank becomes 5. In fact, we may use the matrix contain-
ing simply the squared distances d2

ij , zeros on the diagonal and units on the last
column and last row. Our discussion has thus reduced the problem of identifying
a 3D structure to an algebraic test.

One variant of the problem can be stated as follows: Given an incomplete,
undirected, weighted graph G, the molecular Euclidean embedding problem is that
of mapping the nodes (or vertices) of G to points in the 3D Euclidean space E3

so that any two nodes with an edge between them are mapped to points whose
Euclidean distance equals the weight of that edge. Then, the point set, or the
corresponding distance matrix, is said to be embeddable. This problem is NP-
hard with respect to Ek for any k � 2, even if all given distances lie in {1, 2} [23].
It was one of the first geometric problems shown to be in this class.

Fundamental work exists concerning general distance matrices. Let ‖ · ‖2

stand for the 2-norm (or Euclidean norm) of vectors or of matrices; this is the



I.Z. Emiris and T.G. Nikitopoulos / Conformation by matrix perturbations 239

default norm, understood when none is specified. For vector v = (vi)i and for
matrix M we have

‖v‖2 =
(∑

i

v2
i

)1/2

, ‖M‖2 = max
v �=0

‖Mv‖2

‖v‖2
.

A relevant property of distance matrices is the following.

Theorem 2.3 [24]. Let eT = [1, . . . , 1] be the vector of units. For any vector s
such that sT e = 1, and any square matrix M, define the norm

|M|s := ‖ (I − esT ) M (I − esT )T ‖2,

where I is the identity matrix with the same dimension as M. Given a distance
matrix D and any vector s, we can construct a new distance matrix D′ embed-
dable in E3 such that |D −D′|s is minimized.

This construction is based on the truncation of the matrix of singular val-
ues, hence its computation is relatively fast. This has been implemented but it is
only a secondary tool in our approach, since it does not respect the information
which is available in the form of distance intervals or other prior information on
the entries of D.

3. Matrix perturbations

This section presents numerical linear algebra approaches for the problems
related to distance matrices, namely rank reduction while preserving structure.
We shall thus describe the algorithmic basis of our technique.

Reducing a specific subset of eigenvalues and bringing them close to zero
has been addressed in numerical analysis in different contexts (see [4,25–27] and
the references thereof). We shall focus on the latter approach, which studies the
minimization of the last singular value, because it is possible to devise structured
rank-reducing perturbations which preserve (at least) symmetry, reality and zero
diagonal by modifying only certain entries. Wicks and Decarlo [27] propose a
modified Newton-type iteration in order to avoid instabilities near the minimum,
where the derivative vanishes. Moreover, this modification ensures global conver-
gence at a nearly quadratic rate, including in the case of arbitrary complex rect-
angular matrices. We shall extend these methods in order to reduce more than
one singular values, while maintaining the structure. It is possible to specify the
set of perturbable entries and the perturbation magnitude per entry, hence defin-
ing the direction of the perturbation in the search space. If, moreover, we limit
the magnitude of the perturbation per entry, we are able to search in a neigh-
borhood of our choice.
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The rest of the section presents the notions of linear algebra required; for
further information (see [28–30]). Let us consider an N × N matrix M. The
eigenvalues of M are the scalar solutions of λ in the vector equation Mv = λv ⇔
(M−λI)v = 0, for some column nonzero vector v ∈ R

N , which is called the asso-
ciated right eigenvector, where I is the N × N identity matrix and 0 stands for
the N -dimensional zero vector. It is possible to write the above equations using
the left associated column eigenvector u, namely uTM = λuT ⇔ uT (M−λI) = 0.
When M is real and symmetric, its eigenvalues λ are real and its (left or right)
eigenvectors form an orthonormal basis of R

N . The real symmetric eigenvalue,
or spectral decomposition, problem is equivalent to solving matrix equation
M = QT�Q, where QT = Q−1 contains the eigenvectors as columns of Q, and
diagonal matrix � contains the eigenvalues. This decomposition is numerically
unstable, therefore hard to compute, and shall thus be avoided.

A more useful matrix decomposition is the Singular Value Decomposition
(SVD), which writes M = Q1�Q

H
2 , where QH

i = Q−1
i , i = 1, 2, and QH

i stands
for the transposed conjugate matrix, and � is a diagonal matrix containing the
singular values of M. The columns of Q1,Q2 are the left and right singular
vectors associated to the respective singular values. The SVD decomposition is
unique if we require that the singular vectors be of unit length. The absolute val-
ues of the eigenvalues are the singular values. For a real symmetric M, both Qi

are real. Moreover, the associated left and right singular vectors are either equal
or opposite to each other; the latter case occurs exactly when the correspond-
ing eigenvalue is negative. The singular vectors are equal to the corresponding
eigenvectors within sign. The rank of a matrix is the number of nonzero eigen-
values, or the number of nonzero singular values. If the rank is smaller than the
minimum of the row or column dimension, then the matrix is said to be singu-
lar. For square matrices, this is equivalent to the vanishing of the determinant.
Rank computations rely on the SVD because it is in practice faster and more
stable numerically.

Our method makes use of the Moore–Penrose pseudo-inverse of a matrix M.
This is the unique matrix M+ satisfying

MM+M = M, M+MM+ = M+, (MM+)H = MM+, (M+M)H = M+M.

If M is m×n and has full rank then M+ equals either (MHM)−1MH for m � n,
or M+(MM+)−1 for m � n. If M is Hermitian then M+M = MM+ [28]. There
are efficient and accurate implementations for the pseudo-inverse. In particular,
the computation based on the SVD, for a real symmetric matrix M is as fol-
lows. Consider that M = Q1�Q

T
2 with � = diag(σ1, . . . σr , 0, . . . , 0), then M+ =

Q2�
+QT

1 , where

�+ = diag
[

1
σ1
, . . . ,

1
σr
, 0, . . . , 0

]
, r = rank(M).
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Here, diag[a1, . . . , aN ] stands for a diagonal matrix with entries a1, . . . , aN , and
the singular values are ordered: σ1 � · · · � σr > 0.

Let u and v be vectors of reals with uT v �= 0. Then,
(
uTMv

)
/
(
uT v

)
is a

Rayleigh quotient. If either u or v is (respectively, near) an eigenvector corre-
sponding to an eigenvalue λ of M, then the Rayleigh quotient reproduces (resp.
approximates) that eigenvalue. Iterative algorithms for eigenvalue computation
and, in particular, spectral decompositions (like the power method), use the Ray-
leigh quotients to iteratively improve a numerical approximation of λ.

Proposition 3.1 (Extremal property of Rayleigh quotients) [29]. Let σj , vj denote
respectively the ordered singular values and (right) singular vectors of M. Then,

σn = min
‖x‖2=1

xTMx, x ∈ R
N,

provided xT vj = 0 for each n+ 1 � j � N .

Now we state the main property concerning the singular values (and eigen-
values) of matrices under small perturbations.

Theorem 3.2 [30, Thm.IV.2.3]. Let R be a matrix with the same dimensions as
matrix M. If σk(·) denotes the kth singular value of some matrix, then the func-
tion

f (ξ) := σk(M − ξR),
is differentiable with respect to real variable ξ , as long as σk(M − ξR) is distinct
from all other singular values, for all ξ . Moreover, for M real and symmetric,
f ′(ξ) = −uTk Rvk, where uk, vk are the singular vectors of M − ξR associated to
σk(M − ξR).

An analogous result applies to eigenvalues and eigenvectors. The theo-
rem yields, immediately, the following Newton-type iteration for minimizing the
smallest singular value and, eventually, driving it to zero.

ξ ← ξ + u
T
N(M − ξR)vN
uTNRvN

= uTNMvN

uTNRvN
,

where uN , vN are the singular vectors of M − ξR associated with singular value
σN(M − ξR). Then, the N th singular value of M − ξR approaches zero with a
quadratic rate.

So far, we have discussed essentially one-dimensional perturbations, since
there is a single variable controlling the matrix change. In Ref. [27], this is gen-
eralized to structured perturbations, i.e., where several entries are perturbed in
an independent fashion; the approach is also extended to rectangular complex
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matrices. Let Rij be a perturbation matrix having the same dimensions as M and
zeros in all entries except of units at entries (i, j) and (j, i), where 1 � i < j �
N . The number of independent Rij is denoted by p. Let R be a subspace of sym-
metric square matrices of dimension p generated by the Rkikj , 1 < ki < kj � N :

R =
{

p∑
k=1

ξkRkikj : [ξ1, . . . , ξp] ∈ R
p

}
.

Now, (uTMv)/(uT Rijv) is called the generalized Rayleigh quotient with respect to
M. The algorithm in Ref. [27, secion 4], specialized to a square real symmetric
N ×N matrix M, has the following input, output, and procedure:

Algorithm 3.3. Input: a square real symmetric N ×N matrix M, and a tolerance
τ > 0 that determines numerical zero.
Output: a square real symmetric N × N matrix whose last (i.e., smallest) singu-
lar value is smaller than τ and which lies in the neighborhood of M. The output
matrix is singular within τ .

0. Initialize the perturbation matrix R ∈ R, possibly to the zero matrix.
1. Compute the SVD decomposition M − R = U�V T , where the N th singular
value and vectors are denoted by σN, uN, vN , respectively.
2. Let perturbation matrix � ∈ R have minimum norm such that it minimizes
‖uTN�vN − uTN(M − R)vN‖.
3. Define quantities α, γ ∈ R as follows. Let

α← ‖ uTN�(I − vNvTN)(M − R)+� ‖, γ ← min
{

1,
‖uTN�vN‖

4ασN

}
,

and set R← R + γ�.
4. If γ ‖�‖ < τ‖M −R‖, then the algorithm terminates; otherwise, go to step 1.

In steps 2–4, the 2-norm is used. Step 2 reduces to finding vector ξ ∈R
p,

which defines � in the basis of the Rij , assuming ‖�‖=‖ξ‖. Equivalently,
the algorithm must compute ξ =E+F , where E is the p-dimensional vector
[. . . , vTNR

T
ijuN, . . . ], where the (i, j) range over all entries of M to be perturbed

independently, and F = uTN(M − R)vN.
Step 3 is designed so that the algorithm achieves nearly quadratic rate of

convergence as it approaches the minimum. In implementing it, we can simplify
the calculations by using relation

(I − vNvTN) (M − R)+ = [v1, . . . , vN−1, 0] diag
[

1
σ1
, . . . ,

1
σN−1

, 0
]
UT .
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Theorem 3.4 [27]. Suppose that ‖�‖ is always bounded; for this, it suffices that
‖E+‖ remains bounded. Then, Algorithm 3.3 makes σN(M − R) approach zero,
unless uTn RvN tends to zero for all R ∈ R. The algorithm has global conver-
gence at a nearly quadratic rate, even as the last (i.e., smallest) singular value
approaches its minimum value.

4. Computing conformations

We extend the above algorithm in order to further reduce the rank of the
matrix to n− 1, instead of N − 1, where n indexes henceforth the largest among
the singular values that must be minimized and, eventually, reduced to zero. In
practice, n = 6 in order for the given matrix to be perturbed to a valid Cayley–
Menger distance matrix.

We shall use an iteration similar to the Rayleigh quotient iteration, for pro-
ducing structured rank-reducing perturbations. The idea is essentially to inverse
the procedure of the standard Rayleigh quotient. Suppose N × N matrix M is
close enough to being embeddable in E3. At each step of Newton’s iteration
for minimizing its nth singular value (and all smaller singular values), suppos-
ing the singular value is distinct, it suffices to compute � ∈ R such that
uTn�vn= uTn (M − R) vn and set the perturbation matrix R← R +� ∈ R, where
vectors un, vn are associated to singular value σn(M − R). This leads to a heu-
ristic way of computing � since we have no formal manner to define a quantity
like γ in Algorithm 3.3.

A better approach uses further necessary conditions to facilitate the optimi-
zation process. Let the Dirac function be δij such that

δij = 1⇔ i = j and δij = 0 otherwise.

To identify a new conformation, all singular values smaller than σn−1 must be
close to zero. The following algorithm uses the necessary conditions of this fact.

Algorithm 4.1. Input: an interval N × N distance matrix and starting values in
each one of the intervals such that a valid distance matrix exists in their neigh-
borhood; a perturbation space R corresponding to N × N matrices; an index n
(typically 6); a tolerance τ > 0.
Output: a valid N×N distance matrix satisfying the intervals of the input matrix
such that the nth and all smaller singular values are smaller than τ .

Procedure: Let the approximate distance matrix of the starting values be D.
It suffices to compute � ∈ R such that

uTn�vj = δnjuTn (D − R) vj , n � j � N, (1)
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and set in the next step R ← R + �, where singular vector un is associated to
singular value σn(D − R). Moreover, (1) should hold for each ui , n � i � N , so
the above relation becomes:

uTi �vj = δijuTi (D − R) vj , n � i, j � N. (2)

Satisfying the stated conditions is equivalent to solving a linear system Eξ = F .
The algorithm iterates until the nth singular value drops below τ .

Once we have fixed the basis R of the perturbation space, defining � is
equivalent to finding vector ξ ∈ R

p, where p stands for the dimension of R. The
above conditions lead to the solution of a dense linear system Eξ = F , where

E =




...
...

vTj Ri1j1ui, . . . , v
T
j Ripjpui

...
...


 , F =




...

δiju
T
i (D − R)vj

...


 ,

where each pair i, j , for i = n, . . . , N, j = i, . . . , N defines the corresponding
row in matrix E and vector F . For N ×N Cayley–Menger matrices correspond-
ing to N − 1 points, the number of perturbable entries is p � (N − 1)(N − 2)/2.
The row dimension of E equals

∑N
l=n(N + 1− l), for N � n, whereas its column

dimension is p.
For i �= j , condition (2) becomes uTi �vj = 0, and most relations will be of

this type. They have the effect of keeping � small.
If E is square, then QR (or LU) decomposition is applied for computing

ξ , by solving the square system Eξ = F . If the linear system Eξ = F is over-
determined, we use the Moore–Penrose pseudo-inverse. This yields the solution
ξ = E+F , optimal in a least-squares sense [29]. In other words, it minimizes the
sum of squares of the values of the equations at the chosen solution.

Example 4.2. Let us consider the cyclohexane molecule, to be fully examined in
Section 5. The goal is to minimize the 6th singular value, which implies that the
first 5 singular values can be nonzero but all other singular values are close to
zero, hence the rank becomes 5. Then F is a 3×1 vector, and E is the following
3× 3 matrix:

E =


vT6 R25u6 v

T
6 R36u6 v

T
6 R47u6

vT7 R25u6 v
T
7 R36u6 v

T
7 R47u6

vT7 R25u7 v
T
7 R36u7 v

T
7 R47u7


 .

The algorithm actually takes an additional parameter as input, which
bounds the number of iterations. It stores the candidate matrix of lowest rank
at all times. So, the algorithm outputs this candidate, in case it cannot compute
a distance matrix of rank 5 in the prescribed number of iterations.
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Remark 4.3. If some Cayley–Menger matrix is sufficiently close (in terms of
Newton’s iteration) to a given approximate distance matrix D, then a Cayley–
Menger matrix exists and is unique if and only if the solution of (1), stated as
part of Algorithm 4.1, exists and is unique.

How is this remark justified? Formally, D must be in an attractive region
of a valid Cayley–Menger distance matrix in terms of Newton’s iteration. Since
Newton’s iteration converges, matrix � should exist if and only if a valid
Cayley–Menger distance matrix exists. Matrix � represents the direction of
approaching the embeddable matrix so having a unique direction is equiva-
lent to a unique completion, in other words a unique Cayley–Menger distance
matrix.

The number of columns of E depends on the number of perturbation
matrices. Since we seek a unique solution, the number of these columns should
be at most equal to the number of rows of E, namely

∑N
l=6(N − l + 1) for

n= 6. The common case is the number of columns to be exactly equal to the
number of its rows, analogous to the fact that a linear system with unique
solution is typically square. It is possible, of course, to have uniqueness with
an overdetermined system, though this is improbable, under exact computa-
tion. For a random overdetermined system, there is no solution that satisfies
all equations, hence we strive for a solution vector that minimizes some crite-
rion on the set of equations. We choose the least-squares criterion, which min-
imizes the sum of squares of the values of the given equations at the solution
vector.

More formally, if N stands for the dimension of the distance matrix, each
iteration must apply SVD on an N × N matrix. This has complexity in O(N3),
and the hidden constant is roughly bounded above by 20. On the other hand,
the linear system Eξ = F has dimension that grows in the worst case asymptot-
ically like N2, because this is the growth of the number p of columns in E, as
well as the growth of the number of rows in E. Hence, the complexity of solv-
ing for ξ is in O(N6) and clearly dominates the overall complexity per step. The
hidden constant is small, usually less than 2. Of course, the number of columns
and of rows in E can be smaller than the maximum possible, namely in O(N), in
which case the total complexity lies in O(N3). This is certainly true when a small
number of matrix entries are perturbable. This happens soon after the overall
algorithm (which applies Algorithm 4.1 but also enforces the given interval con-
straints) starts execution, because several entries have reached the extreme values
allowed by the corresponding input intervals.

Since a unique completion of a given incomplete distance matrix depends
upon the number of perturbation matrices, the unspecified entries can be freely
chosen within a set of compatible distances. Based on this information, we esti-
mate the dimension of the space of all possible conformations. This result is
related to a more general, though looser, bound from Ref. [31].
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Remark 4.4. Let p stand for the number of all unknown or unspecified entries
in D. If the approximate (or incomplete) distance matrix D leads to an embed-
dable Cayley–Menger matrix in E3, which is sufficiently close to D, then at least
as many as

max

{
p −

N∑
l=6

(N − l + 1), 0

}
, N � 6,

of these entries can be freely perturbed; the other entries are then determined.
Moreover, this number bounds from below the dimension (degrees of freedom)
of the conformation manifold.

We have described the main heuristic for finding a valid conformation in
the neighborhood of a given invalid distance matrix. But how to produce the lat-
ter from a set of interval constraints? We may compute several possible starting
points by systematically sampling the input intervals. For molecules or molecu-
lar substructures with few degrees of freedom (less than 15), we are able to fully
enumerate all realizable 3D conformations. Our method is not able to avoid cer-
tain obstacles, such as those related to the requirement of distinctness of the sin-
gular values, as they are perturbed, hence running the risk of getting trapped
into local minima. Thus, different starting points can be used to circumvent this.
In general, a regular sampling may be suboptimal, because some solutions have
bigger attractive regions in the space of starting parameters, and there can even
be fractal boundaries between attractive regions [32]. In fact, optimizing the sam-
pling is a question of independent interest and part of our future work.

The section concludes with an ancillary technique implemented for refining
the initial intervals, namely triangular inequalities, though more work is required
in this important direction. The underlying principle is the following. Let dij
express Euclidean distance between point masses i and j . The relation between
the geminal distance d13 and the bond angle θ between the two consecutive
bonds of atom 2 (with atoms 1 and 3, respectively) is given explicitly by the law
of cosines:

d2
13 = d2

12 + d2
23 − 2d12d23 cos(θ), (3)

where |d12− d23| and d12+ d23 are called the lower and upper triangle inequality
limits respectively. The problem of generating and refining all triangle inequality
bounds is equivalent to a shortest-path problem, which is of polynomial com-
plexity [12,33].

5. Cycloalkanes

The algorithm and the observations in the previous sections make no
assumption about the geometry of molecular chains. Here, we consider the case
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of cycloalkanes since it is a problem of conformational calculations with many
strong geometric constraints. This problem may arise as a subtask when studying
proteins. For an illustration, we examine molecules with 6–8 backbone degrees of
freedom, which are rotations about carbon-carbon bonds in the aromatic ring.

The cyclohexane has an infinite number of geometrically possible conforma-
tions due to its symmetry. Besides two rigid chair conformations, it can assume
any conformation in a closed one-dimensional loop manifold; this manifold con-
tains two embedded points corresponding to boat conformations [19].

The Cayley–Menger matrix is

D =




0 b c u1 c b 1
b 0 b c u2 c 1
c b 0 b c u3 1
u1 c b 0 b c 1
c u2 c b 0 b 1
b c u3 c b 0 1
1 1 1 1 1 1 0



,

where bond lengths b = 1.542 Å, bond angles remain fixed at 109.47◦ (thus,
using the rule of cosines, c = 2.512 Å) and u1, u2, u3 represent unknown values.
Once these unspecified entries are determined, we can recover the geometry of
the molecule up to global translations, rotations and chirality. Thus, the starting
point is to identify the symmetric perturbation matrices of D. In this case, the
subspace of matrices R has a basis comprised of R14, R25, R36. Assume that we
already know a conformation of cyclohexane in the one-dimensional manifold.
This conformation corresponds to a unique set of u1, u2, u3 values. The values of
u2 and u3 depend on u1. Thus, by removing one perturbation matrix (e.g., R14)
from R, we can find a new unique Cayley–Menger matrix for each value of u1,
using our algorithm. This is equivalent to setting u1 to a certain number of val-
ues. In the cyclohexane’s case, we used a fixed step value of 0.05 Å, to explore
the entire conformation manifold.

Besides computing all conformations on the manifold, our method was
applied to enumerate all distinct types of conformations. By altering just dihe-
dral angles it is impossible to pass between the boat and the chair geometries,
whereas changing some angles between bonds can do it. We have applied a
small perturbation (i.e., in the range of 10%), of interatomic distances in order
to destroy the molecule’s symmetry and produce a finite number of conforma-
tions, thus allowing us a “global” view of conformation space. Our method gives
results as good as fully rigorous algebraic methods in that we obtain at most
four solutions, as in Ref. [1,19,21]. The four isolated conformations correspond
to two chair and two boat conformations, which correspond to the conforma-
tions most encountered in nature and hence minimizing energy. See figure 2 for
these four conformations, as computed in Ref. [19]. The number of solutions
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Figure 2. Chair and boat conformations of cyclohexane from Ref. [19].

upper bounds the number of connected components of the manifold, provided
the input is generic (in practice, random).

Now let us refer to matrix E and vector F of the previous section: Since
R14 is removed from R, the dimensions of E,F are 3 × 2 and 3 × 1, respec-
tively. Thus, the optimization involves the solution of an overdetermined system
of linear equations. After three iterations, we have ‖Ekξ−Fk‖2 < 10−15, and this
is zero within the precision of 16 decimal digits used by modern day hardware
when employing double-precision floating-point arithmetic. Therefore the algo-
rithm stops. This is an instance of a certified answer in the context of numerical
computation.

For the cycloheptane, the Cayley–Menger matrix has seven unknown entries:

D =




0 b c u1 u2 c b 1
b 0 b c u3 u4 c 1
c b 0 b c u5 u6 1
u1 c b 0 b c u7 1
u2 u3 c b 0 b c 1
c u4 u5 c b 0 b 1
b c u6 u7 c b 0 1
1 1 1 1 1 1 1 0




,

where matrices R14, R15, R25, R26, R36, R37, R47 form a basis of R. Starting
with a given conformation, we extract one perturbation matrix from R (e.g., R14,
corresponding to fixing u1) and proceed with the singular value optimization. In
this case, Ek and Fk define a 6 × 6 system. We were able to completely explore
each one-dimensional manifold with a step of 0.05 Å, obtaining for example,
more than 50 valid conformations with u1 in the range [8.586, 11.290] Å. We
see that the matrix entry u1 is constrained by u1< 11.29 Å. While exploring the
one-dimensional manifold and after some iterations, if u1 is increased beyond
this bound, then condition (1), stated as part of Algorithm 4.1, cannot be satis-
fied. This is a case of incompatible constraints, and matrix Ek becomes singular
implying there is no possible ξ .

After extracting one more perturbation matrix from R, it is not possible
to obtain any solutions, so the manifold dimension cannot be larger than one.
Hence our method confirms what is known about the cycloheptane, i.e., that
there are two one-dimensional conformation manifolds [16].
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For the cyclooctane, the Cayley–Menger matrix has 12 unknowns:

D =




0 b c u1 u2 u3 c b 1
b 0 b c u4 u5 u6 c 1
c b 0 b c u7 u8 u9 1
u1 c b 0 b c u10 u11 1
u2 u4 c b 0 b c u12 1
u3 u5 u7 c b 0 b c 1
c u6 u8 u10 c b 0 b 1
b c u9 u11 u12 c b 0 1
1 1 1 1 1 1 1 1 0




.

We are interested in the conformation manifold. A direct consequence of
Remark 4.4 bounds the dimension from below by 12−10 = 2. By extracting cer-
tain perturbation matrices from R, just as for the cycloheptane above, we could
bound the dimension from above by two. Hence its dimension is 2, confirming
what is known [1,22].

6. Computational performance

This section reports on experiments with 6–12 degrees of freedom in cyclo-
alkanes, in table 1. We also apply our implementation to molecular rings of up
to 20 degrees of freedom, not necessarily cycloalkanes; see table 2.

Our software is based on Matlab Version 5.3 or, alternatively, on Scilab.
The advantages of the latter package include its flexibility in code develop-
ment, and the fact that it is freely distributed and simple to install; the two
systems have almost identical syntax. We have used Matlab to generate C
code which, when compiled, gives faster timings than those reported in tables 1
and 2. If the described methods become the bottleneck in the entire process of

Table 1
Method’s performance for computing one cycloalkane conformation.

Molecule DOF Initial 6th SV Final 6th SV Iterations (sec) (KFlop)

Cyclohexane 6 1.56e− 01 3.72e− 08 3 0.02 26

Cycloheptane 7 1.45e− 01 1.31e− 08 3 0.03 38

Cyclooctane 8 1.11e− 01 4.65e− 07 3 0.05 54

Cyclononane 9 1.24e− 01 3.31e− 08 3 0.08 80

Cyclodecane 10 1.64e− 01 6.86e− 07 3 0.12 119

Cycloendecane 11 2.10e− 01 1.43e− 06 3 0.18 183

Cyclododecane 12 1.32e− 01 7.41e− 08 5 0.27 281
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conformational search with NMR data, it is of course possible to implement all
routines in C or C++. In this case, the linear algebra routines can be provided
by the LAPACK [34] software library, whose algorithms are used by Matlab
and Scilab. Besides the distance geometry and matrix perturbations methods
described above, we have implemented interval refinement by means of the tri-
angle inequality.

In the tables are shown the initial and final values for the 6th singular value
(SV), for molecules of a varying number of degrees of freedom (DOF). The
input is created by perturbing a known conformation, then our code computes
a nearby valid conformation. The initial perturbation is limited, so the 6th sin-
gular value is initially smaller than 1; this reveals the local nature of our optimi-
zation. The step size of our experiments is typically � 0.05 Å, though this can
vary. It is interesting that three iterations suffice for all inputs. This implies that
these are relatively small inputs and that the complexity of our method does not
stem from the number of degrees of freedom, but rather from the existence of
local minima. In other words, as long as the initial and final configurations are
sufficiently close, the algorithm is pretty fast.

Both tables give results averaged over three runs, computed on a 500MHz
Pentium-III architecture. The time complexity, expressed in terms of seconds and
thousands of floating-point operations (KFlops), is meant as a rough indication
of the algorithm’s performance. In table 2, the last column shows the normalized
ratio of running time over N6, where N stands for the matrix dimension, there-
fore N − 1 equals the number of degrees of freedom. Since this ratio fluctuates

Table 2
Method’s performance for computing one conformation of a

structure with a ring backbone.

DOF Initial 6th SV Final 6th SV Iterations (sec) (KFlop) Ratio

7 2.98e− 02 6.64e− 14 3 0.01 36 3.81
8 2.57e− 02 4.43e− 12 3 0.05 49 9.41
9 2.10e− 02 6.29e− 11 3 0.05 73 5.00

10 2.38e− 02 2.95e− 13 3 0.11 109 6.21
11 3.16e− 02 2.60e− 12 3 0.16 165 5.36
12 8.13e− 02 1.20e− 07 3 0.22 282 4.56
13 8.09e− 02 8.49e− 08 3 0.30 450 3.98
14 3.72e− 02 6.04e− 13 3 0.49 606 4.31
15 3.53e− 02 2.02e− 14 3 0.77 940 4.59
16 3.78e− 02 1.72e− 12 3 1.15 1404 4.76
17 3.83e− 02 1.70e− 13 3 1.54 2082 4.53
18 3.53e− 02 3.93e− 13 3 2.14 3039 4.55
19 3.80e− 02 4.59e− 14 3 2.91 4344 4.55
20 4.00e− 02 7.09e− 13 3 3.79 6136 4.42
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Table 3
Point mass coordinates for the molecule in figure 1.

Atom X Y Z

1. 2.9542 −1.4439 0.2325
2. 3.4683 −0.3184 −0.6155
3. 2.6029 0.9049 −0.5484
4. 2.0938 1.1841 0.8346
5. 1.1711 2.3655 0.8891
6. −0.2595 2.0011 0.6237
7. −0.5796 1.9223 −0.8397
8. −2.0068 1.5446 −1.1051
9. −2.7251 1.0769 0.1259

10. −3.4377 −0.2276 −0.0748
11. −2.8818 −1.3326 0.7738
12. −1.9387 −2.2259 0.0239
13. −0.6922 −1.5182 −0.4183
14. 0.4935 −1.8305 0.4457
15. 1.7375 −2.1024 −0.3472

very little as N increases, we confirm the theoretical prediction that the time
complexity of our algorithm is in O(N6).

In figure 1 we present a molecule with 15 degrees of freedom, as computed by
our software on Matlab. Here all bond lengths are equal to 1.5 Å, as induced by
table 3, which contains the Cartesian coordinates of all backbone atoms, regarded
as point masses. The shown conformation satisfies all bond length constraints,
as well as the bond angles constraints. This computation first finds the center
of mass, from the given Cayley–Menger distance matrix. Then, it computes the
position of each point with respect to this center. Hence, the result is unambigu-
ous within rotations and translations. Our techniques cannot distinguish between
mirror symmetries, so it would require a postprocessing step, where one decides
on chirality by homology arguments based on the existing databases.

Behind Matlab and Scilab lies the software library LAPACK [34], of
which we heavily use its tridiagonal eigensolver. In particular, the orthogonaliza-
tion by the routine “DSTEIN" uses more than 90% of the time to compute the
eigenpairs by tridiagonalization. Still, the main bottleneck of our algorithm is
(dense) linear system solving, which could benefit from specialized software and
from exploiting structure.

7. Future research

Our algorithm uses, in each iteration, a symmetric eigenvalue decomposi-
tion and linear system solving. This is a local optimization procedure, whereas
the problem is essentially one of global optimization. To give a complete set



252 I.Z. Emiris and T.G. Nikitopoulos / Conformations by matrix perturbations

of conformations, improved sampling techniques must be applied. We have also
experimented with interval analysis in order to exclude regions that contain no
conformation. This will provide candidate regions which are small enough to be
explored by our methods. Our preliminary tests applied the interval capabilities
of Maple, and package Alias, implemented in C/C++ [35].

Bound smoothing is a standard technique in refining distance intervals
obtained indirectly, namely by successively applying the triangle and tetrangle
inequalities [36]. Although the former has been implemented, the latter has not
been fully exploited yet. The optimal use of these inequalities is an important open
question. We have observed a systematic overestimation of these intervals; one way
to reduce them is through heuristics based on information from the Protein Data
Bank. Using a local coordinate system may offer better constraint propagation.

The complete solution of some perturbed system (as for the cyclohexane)
is part of future work, when it comes to larger molecules. This would yield a set
of isolated solutions, whose cardinality would bound the number of connected
components. For the cyclooctane, this cardinality constitutes an interesting open
question today; it is believed [16] that there are two or three connected compo-
nents, but no proof exists.

Last but not least, we expect some improvements in accuracy and efficiency
if we use the notion of a cluster of singular values, for example, in the algorithm
of Ref. [37].

Acknowledgments

The first author started this work at INRIA Sophia–Antipolis, France,
where he was a full-time Tenured Researcher. His work at the National Univer-
sity of Athens has been partially supported by Project 70/4/6452 of the Research
Council of the National University of Athens, and by the bilateral project
“Calamata” of an Associated Team with INRIA Sophia-Antipolis, funded by
INRIA.

The second author thanks Gordon Crippen and Timothy Havel for insight-
ful discussions.

References
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